** 题:如图,△ABC的角平分线AD交其外接⊙O于点D,交BC于点F,过点D作⊙O的切线与AC的延长线交于点E,且BD=
3\sqrt{2}
,DE+CE=6,AB:AC=3:2。求BF的长。**
解答:如图,过点F作FG ∥ AC交AB于点G,连接OD交BC于点M,过点C作CN ⊥ DE,垂足为N,连接CD。
则BM=CM=\frac{1}{2}BC
∵ ∠1=∠2,∴ ∠2=∠AFG=∠1,∴AG=GF,BD=CD
又 ∵ FG ∥ AC,
∴ \frac{BF}{CF}=\frac{BG}{AG}=\frac{BG}{BF}=\frac{AB}{AC}=\frac{3}{2}
∴ BF=\frac{3}{5}BC,CF=\frac{2}{5}BC
∵ ∠\alpha=∠1=∠2=∠DBC,
∴ BC ∥ DE,∴ DM=CN,DN=CM=\frac{1}{2}BC
在Rt△BDM中,DM²=BD²-BM²=BD²-(\frac{1}{2}BC)^2
在Rt△CNE中,CE²=NE²+CN²=(DE-\frac{1}{2}BC)^2+CN^2
∴ CE²=(DE-\frac{1}{2}BC)^2+DM^2=(DE-\frac{1}{2}BC)^2+BD²-(\frac{1}{2}BC)^2
又∵ DE+CE=6
∴ DE=\frac{18}{12-BC},CE=\frac{54-6BC}{12-BC}
从而 \frac{DE}{CE}=\frac{3}{9-BC}
∵ DE与⊙O相切,∴ ∠CDE=∠DBF
∵ BC ∥ DE,∴ ∠E=∠ACF=∠BDF
∴ △BDF\sim △DEC
从而 \frac{DE}{CE}=\frac{BD}{DF}=\frac{3}{9-BC}
又∵BD=3\sqrt{2},∴ DF=(9-BC)\sqrt{2}
又∵ △BDF\sim △DEC
∴ \frac{DF}{CE}=\frac{BD}{DE}=\frac{3\sqrt{2}}{\frac{18}{12-BC}}
又∵ BC ∥ DE ∴ \frac{AF}{AD}=\frac{AC}{AE}
∵ ∠FCD=∠1,∠AFB=∠CFD
∴ △AFB\sim △CFD
从而 \frac{AB}{AF}=\frac{CD}{CF}=\frac{BD}{CF},即AB·CF=BD·AF
∴ \frac{AB}{AF}=\frac{AF\cdot AB\cdot CF}{AD\cdot BD\cdot AF}=\frac{AB \cdot CF}{AD \cdot BD}=\frac{AC}{AE}
即\frac{AB \cdot CF}{AC}=\frac{AD \cdot BD}{AE}
∴ \frac{3}{2}CF=3\sqrt{2}\frac{AD}{AE}
又 ∵ BC ∥ DE,∴ \frac{AD}{AE}=\frac{DF}{CE}=\frac{BD}{DE}
∴ \frac{AD}{AE}=\frac{3}{2}CF\cdot\frac{1}{3\sqrt{2}}
=\frac{3}{2}\cdot\frac{2}{5}BC\cdot\frac{1}{3\sqrt{2}}
=\frac{\sqrt{2}}{10}BC\frac{BD}{DE}
=\frac{3\sqrt{2}}{\frac{18}{12-BC}}
∴\frac{3\sqrt{2}}{\frac{18}{12-BC}}=\frac{\sqrt{2}}{10}BC
化简得,\frac{12-BC}{6}=\frac{BC}{10}
解得:BC=7.5
所以 BF=\frac{3}{5}BC=\frac{3}{5}\times7.5=4.5
综上,所求的BF的长为4.5。