引子:若M,\lambda \in R^+,
则\frac{1}{M}\geq 2\lambda-\lambda^2M.
证明:由完全平方(a+b)^2 \geq 0可知,
(\lambda M-1)^2\geq 0,即 0 \leq \lambda^2 M^2-2\lambda M+1。
当M,\lambda \in R^+时,两边同时除以M,得:
\frac{1}{M}\geq 2\lambda-\lambda^2M,得证。
运用:
例1. (1979年全国高中联赛)
设0 < \alpha < \beta < \frac{\pi }{2},求证:
\frac{1}{{\cos ^2 \alpha }} + \frac{1}{{\sin ^2 \alpha \cdot \sin ^2 \beta \cdot \cos ^2 \beta }} \geq 9
证明:原不等式左边记为Q,则
Q=\frac{1}{{\cos ^2 \alpha }} + \frac{\sin ^2 \beta + \cos ^2 \beta}{{\sin ^2 \alpha \cdot \sin ^2 \beta \cdot \cos ^2 \beta }}
=\frac{1}{{\cos ^2 \alpha }} + \frac{1}{{\sin ^2 \alpha \cdot \sin ^2 \beta }} + \frac{1}{{\sin ^2 \alpha \cdot \cos ^2 \beta }}
显然,
\cos ^2 \alpha+\sin ^2 \alpha \cdot \sin ^2 \beta+\sin ^2 \alpha \cdot \cos ^2 \beta=1
∴ 由引理知,当\lambda > 0时,
Q \geq 2\lambda-\lambda ^2 \cos ^2\alpha+2\lambda-\lambda ^2\sin^2\alpha \sin^2 \beta+2\lambda-\lambda ^2\sin^2\alpha \cos^2 \beta
=6\lambda-\lambda^2(\cos ^2 \alpha+\sin ^2 \alpha \cdot \sin ^2 \beta+\sin ^2 \alpha \cdot \cos ^2 \beta)
=6\lambda-\lambda^2
令6\lambda-\lambda^2=9,解得\lambda_1=\lambda_2=3.
故
\frac{1}{{\cos ^2 \alpha }} + \frac{1}{{\sin ^2 \alpha \cdot \sin ^2 \beta \cdot \cos ^2 \beta }} \geq 9
例2. (第22届IMO试题)
已知P为△ABC内一点,BC=a,CA=b,AB=c,
点P到BC,CA,AB的距离分别为d_1,d_2,d_3。
试求\frac{a}{d_1}+\frac{b}{d_2}+\frac{c}{d_3}的最小值。
解:由题知,a,b,c和△ABC的面积S均为常数,d_1,d_2,d_3为变量,但ad_1+bd_2+cd_3=2S也为常量。
所以
\frac{a}{d_1}\geq 2a \lambda-\lambda ^2 ad_1
\frac{b}{d_2}\geq 2b \lambda-\lambda ^2 bd_2
\frac{c}{d_3}\geq 2c \lambda-\lambda ^2 cd_3
三式相加得:
\frac{a}{d_1}+\frac{b}{d_2}+\frac{c}{d_3}\geq 2\lambda(a+b+c)-\lambda ^2 (ad_1+bd_2+cd_3)
\frac{a}{d_1}+\frac{b}{d_2}+\frac{c}{d_3}\geq 2\lambda(a+b+c)-\lambda ^2 S
由于等号成立的条件为\lambda=\frac{1}{d_1}=\frac{1}{d_2}=\frac{1}{d_3},所以
\lambda=\frac{a}{ad_1}=\frac{b}{bd_2}=\frac{c}{cd_3}=\frac{a+b+c}{ad_1+bd_2+cd_3}=\frac{a+b+c}{2S}
故
\frac{a}{d_1}+\frac{b}{d_2}+\frac{c}{d_3}\geq 2\cdot \frac{a+b+c}{2S}(a+b+c)-2\cdot \frac{(a+b+c)^2}{4S^2} \cdot S=\frac{(a+b+c)^2}{2S^2}
即为题目所求的最小值。
例3. 求证:设a_i \in R^+(i=1,2,\ldots,n),\sum_{i = 1}^n {a_i }= S,k \geq 1,
则\sum_{i = 1}^n {(\frac{{a_i }}{{S - a_i }}} )^k \geq \frac{n}{{(n - 1)^k }}
证明:由均值不等式得,
\sum_{i = 1}^n {(\frac{{a_i }}{{S - a_i }}} )^k \geq n(\frac{1}{n}\sum_{i = 1}^n {\frac{{a_i }}{{S - a_i }}} )^k =n^{1 - k} (\sum_{i = 1}^n {\frac{S}{{S - a_i }} - n} )^k
=n^{1 - k} (\sum_{i = 1}^n {\frac{1}{{1 - \frac{{a_i }}{S}}} - n} )^k
由引理,有:
\frac{1}{{1 - \frac{{a_i }}{S}}} \geq 2\lambda - \lambda ^2 (1 - \frac{{a_i }}{S})
所以,
\sum_{i = 1}^n {\frac{1}{{1 - \frac{{a_i }}{S}}}} \geq 2n\lambda -\lambda ^2 (1-\frac{a_i}{S})
=2n\lambda-\lambda ^2 n+\frac{\lambda ^2}{S} \sum_{i =1 }^n {a_i}
=2n\lambda-\lambda ^2 n+\lambda ^2=m \lambda-(n-1)\lambda ^2
令
n^{1 - k} [2n\lambda - (n - 1)\lambda ^2 - n]^k = \frac{n}{{(n - 1)^k }}
可得
(n - 1)\lambda ^2 - 2n\lambda + \frac{n}{{n - 1}} = 0
解得:
\lambda=\frac{n}{n-1}
所以
\sum_{i = 1}^n {(\frac{{a_i }}{{S - a_i }}} )^k \geq n^{1 - k}[\frac{{2n^2 }}{{n - 1}} - \frac{{n^2 (n - 1)}}{{(n - 1)^2 }} - n]^k= \frac{n}{{(n - 1)^k }}
从而原不等式成立。
例4. 设a,b,c,d\in R^+,且a+b+c+d=m。求证:
\frac{{a^2 }}{{b + c + d}} + \frac{{b^2 }}{{a + c + d}} + \frac{{c^2 }}{{a + b + d}} + \frac{{d^2 }}{{a + b + c}} \geq \frac{m}{3}
证明:设原不等式左边为Q,则
Q = \frac{{a^2 }}{{m - a}} + \frac{{b^2 }}{{m - b}} + \frac{{c^2 }}{{m - c}} + \frac{{d^2 }}{{m - d}}
= (\frac{{a^2 }}{{m - a}} + a) + (\frac{{b^2 }}{{m - b}} + b)+(\frac{{c^2 }}{{m - c}} + c) + (\frac{{d^2 }}{{m - d}} + d) - m
= m(\frac{a}{{m - a}} + \frac{b}{{m - b}} + \frac{c}{{m - c}} + \frac{d}{{m - d}}) - m
= m[(\frac{a}{{m - a}} + 1) + (\frac{b}{{m - b}} + 1) + (\frac{c}{{m - c}} + 1) + (\frac{d}{{m - d}} + 1) - 4] - m
= m^2 (\frac{1}{{m - a}} + \frac{1}{{m - b}} + \frac{1}{{m - c}} + \frac{1}{{m - d}}) - 5m
\geq m^2 [2\lambda - \lambda ^2 (m - a) + 2\lambda - \lambda ^2 (m - b) + 2\lambda - \lambda ^2 (m - c) + 2\lambda - \lambda ^2 (m - d)] - 5m
(当且仅当a=b=c=d时,等号成立。)
= m^2 [8\lambda - \lambda ^2 (4m - a - b - c - d)] - 5m
= m^2 (8\lambda - 3m\lambda ^2 ) - 5m
令
m^2 (8\lambda - 3m\lambda ^2 ) - 5m = \frac{m}{3}
解得:
\lambda=\frac{4}{3m}
所以,
Q \geq m^2 (8 \cdot \frac{4}{3m} - 3m \cdot \frac{{16}}{9m^2} ) - 5m=\frac{m}{3}
原不等式等证。
练习题:
练习1. 设a,b,c \in R^+,且abc=1,求证:
\frac{1}{{a^2 (b + c)}} + \frac{1}{{b^2 (c + a)}} + \frac{1}{{c^2 (a + b)}} \geq \frac{3}{2}
练习2. (1984年巴尔干赛题)已知正数a_1,a_2,\ldots,a_n(n\geq 2)满足\sum \limits_{i=1}^n {a_i}=1.
求证:\sum \limits_{i=1}^n{\frac{a_i}{2-a_i}}\geq \frac{n}{2n-1}
练习3. 设a,b,c为△ABC的三边长,求证:
\frac{{a^2 }}{{b + c}} + \frac{{b^2 }}{{c + a}} + \frac{{c^2 }}{{a + b}} \geq \frac{1}{2}(a + b + c)