y=ln{x}_{0}+\frac {1} {{x}_{0}}(x-{x}_{0})
y=\frac {1} {e}x.
{V}_{1}=\frac {1} {3}\pi {e}^{2}
\begin{equation}\begin{split}{V}_{2}&=\int ^{1}_{0} {\pi {(e-{e}^{y})}^{2}}dy\\&=\int ^{1}_{0} {\pi ({e}^{2}-2{e}^{y+1}+{e}^{2y})}dy\\&=\pi {e}^{2}+\pi (-2{e}^{y+1}+\frac {1} {2}{e}^{2y}){|}^{1}_{0}\\&=-\frac {\pi } {2}({e}^{2}+1)+2\pi e\end{split}\end{equation}.
\begin{equation}\begin{split}V&={V}_{1}-{V}_{2}\\&=\frac {1} {3}\pi {e}^{2}+\frac {\pi } {2}({e}^{2}+1)-2\pi e\\&=\frac {\pi } {6}(5{e}^{2}-12e+3)\end{split}\end{equation}.
{W}_{1}=\int ^{{x}_{1}}_{0} {kxdx=\frac {k} {2}}{x}^{2}_{1}=\frac {k} {2}{a}^{2},
{W}_{2}=\int ^{{x}_{2}}_{{x}_{1}} {kxdx},
{W}_{3}=\int ^{{x}_{3}}_{{x}_{2}} {kxdx},
…
{W}_{n}=\int ^{{x}_{n}}_{{x}_{n-1}} {kxdx},,
\begin{equation}\begin{split}\sum ^{n}_{i=1} {{W}_{i}} &={W}_{1}+{W}_{2}+{W}_{3}+\cdots +{W}_{n} \\&=\int ^{{x}_{1}}_{0} {kxdx}+\int ^{{x}_{2}}_{{x}_{1}} {kxdx}+\int ^{{x}_{3}}_{{x}_{2}} {kxdx}+\cdots +\int ^{{x}_{n}}_{{x}_{n-1}} {kxdx} \\&=\int ^{{x}_{n}}_{0} {kxdx}=\frac {k} {2}{x}^{2}_{n} \end{split}\end{equation} .
\begin{equation}\begin{split}\sum ^{n}_{i=1} {{W}_{i}} &={W}_{1}+r{W}_{1}+{r}^{2}{W}_{1}+\cdots +{r}^{n-1}{W}_{1} \\&=(1+r+{r}^{2}+\cdot +{r}^{n-1})\cdot \frac {1} {2}k{a}^{2} \\&=\frac {1-{r}^{n}} {1-r}\cdot \frac {1} {2}k{a}^{2}\end{split}\end{equation}.
{x}_{n}=a\sqrt {\frac {1-{r}^{n}} {1-r}}(m)