广州市第九届小学数学教师解题比赛(决赛)解答题解析-赛题集锦-魔数师说

广州市第九届小学数学教师解题比赛(决赛)解答题解析

广州市第九届小学数学教师解题比赛(决赛)解答题解析

扫码手机浏览

1、求满足方程1!十2!十3!十……十x!=y^2的所有正整数x,y的值。 解:代入易知,当x<5时,满足原方程的组的解只有两组:(1,1)和(3,3)。 下面说明原方程除此两解外,无其它满足要求的正整数解。...

11!2!3!x!=y2x,y11!2!3!x!=y2x,y

x<5(1,1)(3,3)x<5(1,1)(3,3)

5!+6!+7!+=5!×(1+6+6×7+)=120×(1+6+6×7+)5!+6!+7!+=5!×(1+6+6×7+)=120×(1+6+6×7+)

10(5!+6!+7!+)10(5!+6!+7!+)

1!+2!+3!+4!=331!+2!+3!+4!=33

x5x5

1!2!3!x!3(mod10)1!2!3!x!3(mod10)

1!2!3!x!33.1!2!3!x!33.

x5(x,y)x5(x,y)

(x,y)(x,y)

$$

$$

2162,AA2162,AA

A0A0

32,3032,30

AA310,1,2,,30AA310,1,2,,30

0AA30A00AA30A0

$$

3ABCD32ABACCD163ABCD32ABACCD16

AB=a,CD=b,AC=xa,b,xabAB=a,CD=b,AC=xa,b,xab

ΔABCABmΔADCCDnΔABCABmΔADCCDn

$$

m=n=xm=n=x

ABCDABCDACABCDABCDAC

$$

64(16x)x64(16x)x

(x8)20(x8)20

(x8)20(x8)20

(x8)2=0,x=8a+b=8(x8)2=0,x=8a+b=8

44

(a,b,x)=(1,7,8);(2,6,8);(3,5,8);(4,4,8).(a,b,x)=(1,7,8);(2,6,8);(3,5,8);(4,4,8).

$$

4ΔABCΔABCΔABCΔABC4ΔABCΔABCΔABCΔABC

a,b,cp=12(a+b+c)a,b,cp=12(a+b+c)

S=p(pa)(pb)(pc).S=p(pa)(pb)(pc).

SΔABC=S1,SΔABC=S2,SΔABC=S1,SΔABC=S2,

(1)ΔABC(10,10,16)ΔABC(3,3,3)(1)ΔABC(10,10,16)ΔABC(3,3,3)

S1=48S2=9433.897S1>S2S1=48S2=9433.897S1>S2

(2)ΔABC(10,10,16)ΔABC(46,46,83)(2)ΔABC(10,10,16)ΔABC(46,46,83)

S1=48S2=48S1=S2S1=48S2=48S1=S2

(3)ΔABC(10,10,16)ΔABC(9,9,9)(3)ΔABC(10,10,16)ΔABC(9,9,9)

$S_1=48,S_2=\frac{81}{2}\sqrt{3}\approx70.148,S_1S1=48S2=812370.148S1<S2.

ΔABCΔABCΔABCΔABC

阅读全文

本文由Math90.com原创或收集发布,转载@魔数师说!

本文地址:https://www.math90.com/post/20200816161845.html